SCENARIOS FOR BUILDING LOCAL RESILIENCE PAKOKKU TOWNSHIP CLIMATE CHAN(VULNERABILITY ASSESSMENT (2016-2050)

SUMMARY FOR POLICY MAKERS

STUDY CONDUCTED BY

UN@HABITAT

UN @

IN COLLABORATION WITH

Climate Change Vulnerability Assessment of Pakokku Township, Magway Region, Myanmar, 2016-2050: Scenarios for Building Local Resilience Copyright © United Nations Human Settlements Programme (UN-Habitat) First edition 2017

United Nations Human Settlements Programme P.O. Box 30030, Nairobi 00100, Kenya infohabitat@unhabitat.org www.unhabitat.org United Nations Environment UN Avenue, Gigiri PO Box 30552 Nairobi, Kenya www.unep.org

Cover Photo ©MCCA/UN-Habitat, 2016 All pictures, unless otherwise stated, are to be credited to © MCCA/UN-Habitat, 2016

DISCLAIMER

The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or regarding its economic system or degree of development. The analysis, conclusions and recommendations of this publication do not necessarily reflect the views of the United Nations Human Settlements Programme, UN Environment or their qoverning bodies.

ACKNOWLEDGEMENTS

Programme coordinator: Pasquale Capizzi Lead Authors: Liam Fee, Montse Gibert, Ryan Bartlett, Pasquale Capizzi, Radley Horton, Corey Lesk Contributing Author: Annette Wallgren Local Survey Teams: Hung Ling, Tin Ko Oo, Min Zaw Oo, Khin Hun Soe Reviewers: Nina Raasakka, Wyn Ellis, Annette Wallgren, Shashank Mishra Design and Layout: BRIDGE Creative

CITATION

Fee, L.; Gibert, M.; Bartlett R.; Capizzi, P., Horton, R., Lesk, C.: Climate Change Vulnerability Assessment of Pakokku Township, Magway Region, Myanmar, 2016-2050, UN-Habitat Myanmar, 2017 UN-Habitat and UN-Environment initiated and coordinated the report, under the Ministry of Natural Resources and Environmental Conservation (MoNREC) of the Union of the Republic of Myanmar

The study was funded by the European Union under the Myanmar Climate Change Alliance Programme (MCCA). All activities under the MCCA were possible thanks to the generous support of the European Union with the Global Climate Change Alliance.

The World Wide Fund (WWF) contributed through the ADVANCE Partnership with the Columbia University Center for Climate Systems Research (CCSR) in the downscaled projections as well as the analysis of the eco-system.

The Environmental Conservation Department (ECD) of (MoNREC) facilitated the cooperation and access to data and information at ational and local level. The General Administration Department (GAD) of the Ministry Home Affairs facilitated surveys and community consultations at Township level. All Census data has been provided by the Department of Population (Ministry of Labour, Immigration and Population). The Department of Meteorology and Hydrology (OMH) of the Ministry of Transport and Communication (MTC) has provided all data necessary for the downscaled climate change projections.

MCCA is funded by the European Union

AYEYAWADY REGION, 2016-2050: SCENARIOS FOR BUILDING LOCAL RESILIENCE

CLIMATE CHANGE VULNERABILITY

ASSESSMENT OF LABUTTA TOWNSHIP,

SUMMARY FOR POLICY MAKERS

EXECUTIVE SUMMARY

In 2016 the Myanmar Climate Change Alliance, comprised of UN-Habitat, UN-Environment and the Ministry of Natural Resources and Environmental Conservation, in collaboration with WWF and Columbia University conducted a detailed climate change vulnerability assessment of Pakokku Township.

> Pakokku is located in the western part of the central dry zone, on the west bank of the Ayeyawady River. 290.139 people live in Pakokku Township, just over 30 per cent of whom live in the town itself. Pakokku has a mostly flat topography, except for some low mountains in the western area of the township, and is characterized by a hot, dry climate. Vulnerability relating to water is the predominant challenge in the township. Areas by the river experience floods, while away from the river drought and access to water is a chronic problem.

> The study analyses current vulnerabilities, and by projecting changes in climate, anticipates further vulnerabilities in the future up to 2050. On this basis, it proposes scenarios that describe potential impact of climate change, and issues recommendations for adaptation to avoid the worst case future scenario. It also describes the expected outcomes and results, and prioritized activities that communities identified during the assessment.

The study projects changes in climate for the township, to a 25-kilometre spatial resolution. Projections show an increase in temperatures by as much as 2.7° C by 2050, with up to 17 more hot days per year.

The assessment shows that decision-makers in Pakokku Township will need to plan for variable rain, with increases concentrated in the monsoon season, less groundwater availability in dry areas, greater flood risks near the Ayeyarwady, and more frequent and more severe extreme heat events.

In current conditions, the study demonstrates, Pakokku Township is insufficiently resilient to the present climate conditions, and its vulnerability will increase greatly because of the projected future changes in climate if no adaptation actions are taken. This is mainly due to the current socio-economic; infrastructure and ecological system conditions, and the expected impact of climate change on these systems.

The interplay of these underlying vulnerabilities with ongoing and future changes in the climate will, if not urgently addressed, leave the people of Pakokku more vulnerable to disasters and slow on-set changes. The effects will be seen through more frequent loss of assets and potentially lives, lower incomes that will drive poverty, increased migration, worse outcomes for women and a declining public health situation. Housing and basic service conditions, especially in access to water, will also worsen, driven by changes in the climate and degraded ecosystems.

The assessment presents three possible adaptation scenarios by 2050:

The business as usual scenario, in which authorities and communities do not

recognize the urgent need to address different aspects of vulnerability. Therefore, changes in climate have an exponential effect on the three systems analysed in this report; socio-economic, infrastructure, ecological and ultimately affect people's lives, livelihoods, health, and safety by 2050. In this scenario, insufficient planning capacities and governance, negate mid to long-term planning. Decisions are taken to respond to short-term needs; such as building infrastructure and houses in flood prone areas. Under this scenario, livelihoods, infrastructure and environmental conditions will not allow people to improve living conditions in the township. In addition, projected changes in the climate will interact with and exacerbate the existing vulnerabilities and as they do, new, unforeseen vulnerabilities may also emerge.

B

The resilience is built to maintain current living standards scenario, in which the township and communities recognize the urgent need to take action, but also recognize investment, time, economic, technical and skill constraints. In this scenario, an adaptation plan is adopted, and activities that can be implemented without large investment are consistently undertaken, such as the protection of the environment, improving skills and access to credit for more resilient livelihoods and incomes; improvement of water harvesting, among others. Under this scenario, decisions on land-use and town-planning would need to take into account current and projected climate risks, to prevent hazerdous situations, such as infrastructure being constructed near flood-prone areas and the need to clean drainage infrastructure inter alla. In this scenario, the township and communicate them to the districts, states and regions, NGOs and development partners. This scenario is the minimum required to prevent increased vulnerability, and to enable conlinued development.

Resilience is built that enables economic and social development despite changes in climate by 2050, considering the different vulnerabilities of both men and women, in which effective, strategic planning, resources, coordination, and time is assigned not only to maintain basic safety conditions, but to achieve development goals. Based on this assessment, the first of its kind in Pakokku, planning work that follows is strategic, and guides the township planning, the budget request to the district and other authorities. It requests investment from national authorities and international partners, to achieve three main results: 1) To achieve a greener healthy environment that supports the living standards of Pakokku in a sustainable manner despite changes in climate, 2) A diversified, inclusive and resilient infrastructure and connectivity, that protects and enables people. In this scenario, efforts are sustained in an inclusive manner over a long period of time, and by a number of actors, but particularly the local and national government.

PURPOSE, PRINCIPLES AND METHODS OF THE ASSESSMENT

The purpose of this assessment is to inform the Pakokku Township, district, regional and national authorities, as well as the development cooperation, of the expected consequences of climate change and, on this basis, to help them to plan and act to adapt to climate change.

Five overarching principles guide the assessment:

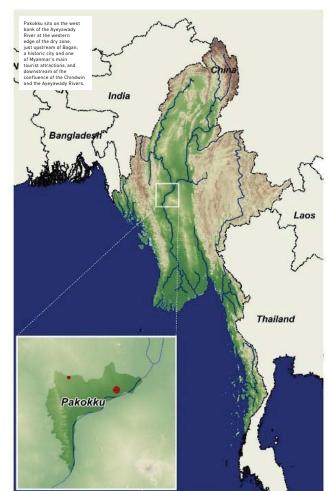
Simplicity, to ensure ease of replication in other townships

- Measurability and availability of data, to ensure ease of update and replication
- · Inclusiveness, to ensure participation of communities
- Comprehensiveness, to ensure relevance of the findings
- Spatial relevance, to guide actual adaptation interventions

To respect these principles, the assessment uses the following:

- Open-source or widely available software, such as Q-GIS.
- Data available at either national or local level, is easily obtained upon written
 request. The assessment does not use satellite imagery. Although this creates
 limitations in developing flood modelling, for example, it enhances the replication
 potential of this work.
- Data from the Census 2014, disaggregated at village-tract and urban ward level, as a key source of information. In addition to being a vast source of information and insight, future census will provide actual monitoring of changes in the structure of the townships, which can be reanalysed in the future. Census data can also be easily accessed for each township;
- Participatory approach, involving communities throughout the whole township through simple questionnaires, community focus groups and participatory mapping;
- Studying the three main systems that define the township; ecological, socioeconomic, and infrastructure. Climate change causes impacts on all three of these systems in Pakokku. A simple analysis of extreme natural hazards does not

help to understand the extent to which the township will need to adapt. Hence, the assessment is designed to analyse system-wide issues and the interaction between systems.


- Identification of the current and future spatial structure of the township, which is
 essential to support planning and interventions for adaptation spatially
- Equal participation of men and women and, where possible, using gender disaggregated data
- Representative engagement of young and old people, and consideration poverty
 drivers such as a lack of access to educational opportunities
- Engagement of the national government and the township throughout the process, to ensure ownership of the results and replication

The methodology works as follows:

- It establishes a basis for analysis by describing the context and key socioeconomic, ecological and infrastructure features and the spatial structure of the township. This generates insights on the current situation and sources of vulnerability. A vulnerability index is presented, which gives an account of the most vulnerable locations in the township;
- It analyses, through both data analysis and community risk mapping, the exposure
 of people and assets to recurrent natural hazards and their potential for rapid and
 slow on-set disaster;
- It overlays downscaled projections of climate change for the township on the current conditions analysed in the assessment and studies how these new climatic conditions will affect people and assets in the township;
- It defines future scenarios that may materialize without adaptive action and contrast them with potential adaptive pathways, which inform adaptation planning.

Pakokku sits on the west bank of the Ayeyawady River at the western edge of the dry zone, just upstream of Bagan, a historic city and one of Myanmar's main tourist attractions, and downstream of the confluence of the Chindwin and the Ayeyawady Rivers.

ပုံ (၁) ပခုက္ကူမြို့နယ်၏တည်နေရာ

LBT01

Climatic features, natural hazards and observed impacts

- A shorter monsoon season results in water shortages for agriculture, drinking water, and livestock.
- Higher temperatures result in faster evaporation of fertilizers impacting nutrient cycling in soil and lowering agricultural yields.
- Severe heat affects livestock health and agricultural productivity.

Ecosystem conditions

- A history of deforestation and land degradation have reduced the ability of the surrounding ecosystem to provide critical services, reducing crop productivity and yields.
- A naturally highly seasonal, dry climate, and poor water quality limit water security in the township, making it highly vulnerable to any reduction in water availability or quality driven by climate change.
- Combined, these conditions have resulted in highly variable, low crop yields that are likely to further decline with increasing temperatures and changes in rainfall patterns.

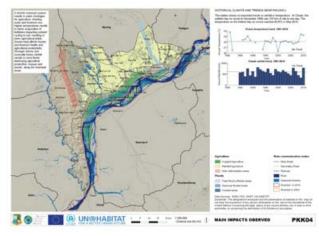


Figure 2. Main environmental impacts observed in Pakokku in 2016

Infrastructure Conditions

- Housing construction is vulnerable to strong winds and floods, mainly in communities along river bank areas.
- Freshwater availability will worsen due to the lack of infrastructure for water storage and management at community level.
- Disaster and climate resilient protection services coverage is very limited.
- Poor transport communication infrastructure is highly vulnerable to hazards, reducing people's mobility in rural areas.
- The lack of climate-sensitive land-use planning increases communities' vulnerability to future hazards.

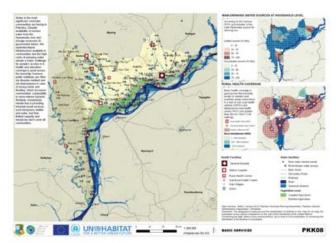
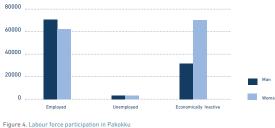


Figure 3. Basic services infrastructure in Pakokku


Fownship Profile 16

Socio-economic Conditions

- There is very high youth migration, with a sex imbalance. This results in fewer young,
 skilled and capable workers, an unusual sex ratio and a high number of femaleheaded households.
- Relatively few people have completed education beyond grade-5 level, and virtually none have vocational training. This makes it hard to attract high value-added, labour intensive industry to the township.
- Household incomes, especially in agriculture, are very low. This limits flexibility to
 prepare for and respond to climate hazards and slow onset changes.
- Industry is the most valuable sector, and is less climate vulnerable than agriculture. but does not create jobs.
- Low levels of education, low incomes and high migration are mutually reinforcing.

Sector	MMK (million)	%
Agriculture	84175.6	16.87
Fishery	16694.8	3.35
Industry	156707.1	31.41
Services	114295.8	22.91
Trade	105451.5	21.13
Total	498944.9	

Table 1: Economic breakdown in Pakokku

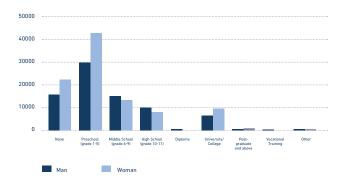


Figure 5. Level of education completed people over 25 (Census, 2014)

Spatial Structure of Pakokku

- Pauk and Magway provide main socio-economic functions to western areas and southern areas respectively, while Mandalay represents the closest city for labour migrants and market supplies.
- Western areas of the township show the lowest levels of socio-economic and infrastructure development, covering only basic health and education services and some basic needs. These areas concentrate 30 per cent of the total population and appear to be rather isolated.
- Pakokku Town and Myit Chay are the two main clusters of settlements of the township covering the highest levels of socio-economic functions and connectivity and provide the greatest number of social and basic services.
- Kamma and Lan are considered nodal towns or important centres of socio-economic activity to rural areas located strategically at township's border crossings.
- Three primary corridors along the main routes of road transport networks are crucial to support the economy of the township, enabling connectivity among the two main clusters and nodal towns.

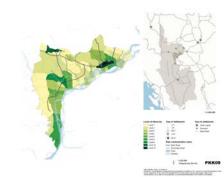


Figure 6. Spatial Distribution and type of settlements

Current Vulnerability Index

- Village tracts along the western border of the township and those located by the river have the greatest levels of vulnerability.
- Areas by the river have higher incomes and greater average incomes, but have the greatest exposure to hazards because of their location. Meanwhile, inland areas face very challenging access to water for both drinking and irrigation.
- Vulnerability levels are high throughout the township, with especially high levels of
 vulnerability defined above. This means that actions to adapt to climate change are
 needed throughout the township, with an initial focus on the highly vulnerable village
 tracts.

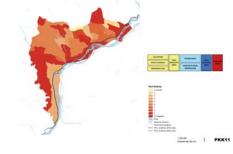


Figure 7. Vulnerability

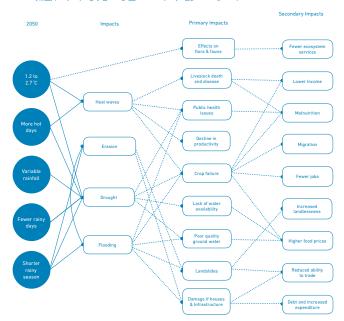
2

20

CLIMATE CHANGE PROJECTIONS AND FUTURE RISKS AND VULNERABILITIES

Climate Change Projections and Future Risks and Vulnerabilities

- The temperature in Pakokku is expected to rise over the coming decades; annual average temperatures could rise by 1.2-2.7°C.
- Warming in the hot season (March-May) and cool season (November-February) is
 projected to slightly exceed warming in the wet season (June to October).
- The number of extreme heat days in Myanmar is projected to increase. By midcentury, extreme heat days during March to May are projected to occur at a frequency of 4-17 days per month, relative to a historically-defined rate of 1 per month.
- Climate models suggest an increase in total rainfall for Pakokku, with more rain during the wet season.
- In the cool season, climate models suggest that Pakokku may be more likely to see a decline in rainfall, than an increase.
- Decision-makers will need to plan for warmer temperatures, more frequent extreme heat days, greater amounts of wet season rain, decreased cool-season rainfall, and uncertain rainfall during the hot season.


		An	nual	Hot Se March		Wet S June to		Cool Season November to Februar		
			High Estimate	Low Estimate	High Estimate	Low Estimate	High Estimate	Low Estimate	High Estimate	
Pakokku	akokku		1.2+°C 2.7+°C		3.1+°C	1.0+°C	2.3+°C	1.3+°C	2.9+°C	
		%6+	%23+	%15-	%17+	%9+	%28+	%27-	%9+	
Regional – Central Dryzone		1.2+°C	2.7+°C	1.5+°C	2.9+°C	1.1+°C	2.3+°C	1.3+°C	2.9+°C	
		%8+	%22+	%12-	%14+	%9+	%26+	%19-	%6+	
Myanmar		1.3+°C 2.7+°C 1.4+°C		1.4+°C	2.9+°C 1.1+°C		2.4+°C	1.3+°C	2.8+°C	
		%6+	%23+	%7-	%19+	%6+	%27+	%12-	%11+	

Future Impacts

The assessment created a 'pathway to impact' graphic, which shows the primary and secondary impacts that will occur due to changes in the climate and resultant hazards by 2050. It also shows the complex interrelationship between hazards and impacts, including how a given primary impact can cause multiple secondary impacts.

The graphic shows that multiple hazards can cause some impacts. For example, crop failure and pests can result from all five of the hazards identified. By understanding this relationship, we can begin to see which people are more likely to be vulnerable; farmers are highly vulnerable because the crops on which they depend for their livelihod can be impacted by numerous hazards. Secondary impacts consider the broader, knock-on effects; so, crop failure would cause worsening nutritional outcomes, because many farmers keep a substantial amount of their crops for household consumption.

Future risks profile and vulnerabilities

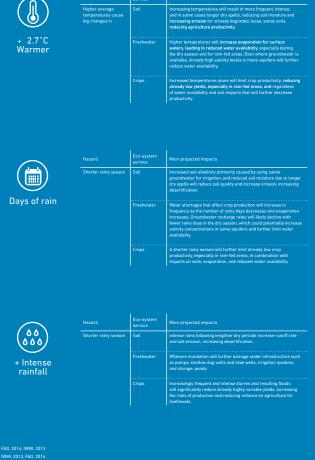
This section of the assessment assumes that business will be conducted as usual, meaning that no adaptation actions will be taken. As such, the future vulnerabilities presented here are not a projection or a forecast of the situation in ecosystems, infrastructure, or socio-economics in 2050, but are a possible scenario if no actions are taken.

i. Increased risks of rapid on-set disasters

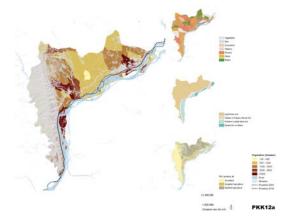
The purpose of this assessment is to inform the Pakoku Township, district, regional and national authorities, as well as the development cooperation, of the expected consequences of climate change and, on this basis, to help them to plan and act to adapt to climate change.

• The changes in climate will result in increasingly intense hazardous events. The threat to people's safety and of loss of life from destructive events will increase, as current infrastructure, planning, and productive methods are not able to withstand current ministrations, plasming, and produce memory are not able to white and increasingly severe hazards. This is because there will be greater risks of rapid on-set disasters from floods and inundation, intense rain, cyclones and tropical storms, storm-surges, and heat-waves.

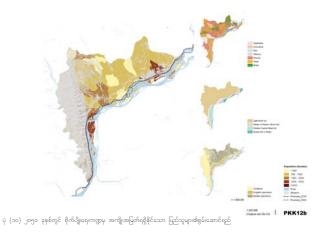
Changes in precipitation patterns, with rainfall projected to change by -15% to +17% in the hot season; and -27% to +9% in the cold season



Main Projected Impacts
Flash floods and intense surface runoff and soil erosion resulting in damage of crops Enhanced problems during La Niña due to excessive water levels
Rever floods, floah floods, and urban flooding, with characteristic effects on project and assets: Severe invadation of Lind: Damage of cosystems and ecosystem services: Damage to Lind and crops: Damage to Lind and crops: Damage to Lind and crops: Damage to project anothing Displacements leading to potential conflict over land


- ii. Increased risks of slow on-set disasters and negative effects on key sectors
- Future vulnerabilities that are likely to emerge or worsen under projected future climate change under a 'business-as-usual' (BAU) scenario, which will have profound effects on the way communities benefit from eco- system services and this in turn will affect productive systems, particularly agricultural productivity, access to water, and mobility.

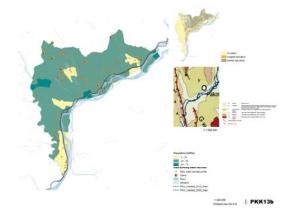
The capacity of the population to benefit from agriculture and incomes in the agriculture sector will decline sharply by 2050


- If these ecosystem trends continue unabated in the coming decades, a significant portion of the population in Pakokku will be forced to either migrate or adapt through alternative livelihoods, as the township will only be able to support a much lower percentage of agriculture-based livelihoods.
- Some irrigated areas along the river will still sustain agriculture production, though
 with significantly lower productivity due to increasing temperatures, highly variable water flows, and increased frequency and intensity of extreme events like strong storms and winds, droughts, and floods.
- Agriculture in rain-fed areas, where productivity is already highly variable, will be even lower, as soil productivity declines due to increasing desiccation and soil moisture loss, highly variable and shortening rainy season, and extreme events that damage crops.
- Some rain-fed farmers will be able to adapt, especially with access to groundwater, but with unsustainably high pumping costs, many will be forced to migrate to urban areas.
- The number of people depending on rain-fed agriculture will decrease by 2050, especially in western and central areas of the township where freshwater sources for irrigation will reduce crop production
- · Communities along the riverbank will face more floods, landslides and intense runoff due to the projected increase in intense rains, which will result in more frequent damaged crops and water infrastructure for irrigation.

26

ပုံ (၉) ၂၀၁၆ ခုနှစ်တွင် စိုက်ပျိုးရေးကဏ္ဍမှ အကျိုးအမြတ်ရရှိသော ပြည်သူများ၏စွမ်းဆောင်ရည်

Fewer people are likely to have access to freshwater for drinking water use by 2050

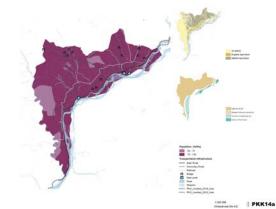

- Change in precipitation patterns results in more frequent heavy rains and winds that increase exposure to flooding in communities located along the riverbank and seasonal streams. Meanwhile, intense runoff and soil erosion caused by more intense rains results in more water facilities damaged.
- Access to freshwater for drinking use is dependent on surface and sub-surface sources: rainwater harvested in storage ponds, flows from the Ayeyawady River, and groundwater aquifers.
- Water quality and availability will depend on both natural sources and direct human impacts on the larger surrounding dry zone landscape, including deforestation upstream that can increase sedimentation rates in the Ayeyawady River.
- A lack of water access for drinking is also likely to further worsen health indicators, including maternal health, as well as migration.

The capacity of the population to have access to surface freshwater for drinking use relies mainly on three eco-systems services (surface freshwater, geology and vegetation cover) that will be highly impacted by the projected Climate Change:

<figure>

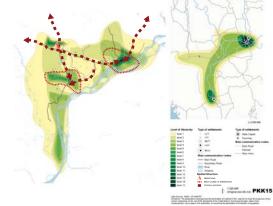
ပုံ (၁၁) ၂၀၁၆ ခုနှစ်တွင် ပခုက္ကူမြိုနယ်၏သောက်သုံးရေ ရရှိနိုင်မှု အခြေအနေ

ပုံ (၁၂) ၂၀၅၀ ခုနှစ်တွင် ပခုက္ကူမြိုနယ်၏သောက်သုံးရေ ရရှိနိုင်မှု အခြေအနေ


People's mobility and communication is expected to be reduced especially in riverbank and south-western areas of the township by 2050

- Pakokku town has a good transportation infrastructure, consisting of water, road, railway, and air transport facilities.
- National paved roads and a railway connects Pakokku town to neighbouring townships. A network of secondary and tertiary unpaved roads provides transport communication to rural settlements, however stronger storms and unusually heavy rainfall results in more floods reducing population's mobility especially in riverbank communities.
- Changes in the Ayeyawady River bed during the period from 2003 to 2016
 show that floods have affected more than thirty per cent of the population
 living in riverbank areas.

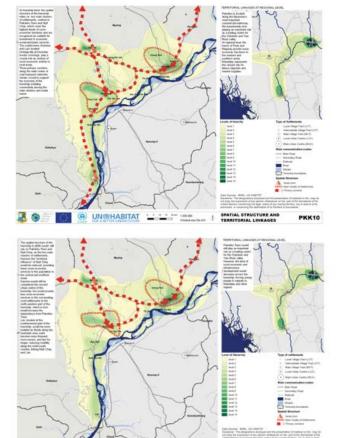
Access to transportation services depends mainly on the interaction of two main eco-system services (type of vegetation and soil) that are already highly impacted by climate change:


periods will

	Hazard	Eco-system service	Main projected impacts
		Type of vegetation	Landslides in riverbank areas damages v and destroys roads and harbours/port fac
+ Intense rainfall		Type of soils	Large quantities of rain falling over short result in more flooding and erosion

ပုံ (၁၃) ၂၀၁၆ ခုနှစ်တွင် ပခုက္ကူမြိုနယ်၏လမ်းပန်းဆက်သွယ်ရေး အခြေအနေ

nd san Cin Alb


ပုံ (၁၄) ၂၀၅၀ ခုနှစ်တွင် ပခုက္ကုမြိုနယ်အိလမ်းပန်းဆက်သွယ်ရေး အခြေအနေ

This assessment arrives at three broad scenarios of the future. These scenarios can help local and national government to plan for actions that will increase Pakokku's resilience to the impacts of climate change. Planning actions based on scenarios is in-line with the IPCC pathways approach and is a common way that governments and industries use to plan for the future.

Scenario A. Business as usual scenario

- If business is conducted as usual, meaning that adaptation measures are not implemented and unsustainable resource – primarily water – use continues, incomes remain low and migration rates are high, Pakokku will not be able to support current and expected population growth at the same living standard as in 2016.
- Pakokku will experience lower incomes because of a lack of irrigation, less
 predictable rainfall, and resultant lower access to water in the dry zone. This is
 because agriculture and livestock are highly dependent on access to water. In the
 riverbank areas, while potential will remain for higher incomes due to greater water
 availability, partial and total losses of crops is likely to increase due to flooding, and
 as such people in these areas incomes will be at risk.
- Migration will continue at least at present levels and will likely increase as incomes
 decline (in dry areas) and are more at risk (in riverbank areas). Migration is
 especially likely to increase if this is combined with present levels of and access to
 education.
- Water availability will decline. Projections show that there will be higher temperatures, declining rainfall and fewer rainy days because of climate change that will cause ground water levels to decrease.
- If current trends continue, floods along the riverbank area could become more frequent, more severe, and last for longer.

SPATIAL STRUCTURE AND TERRITORIAL LINKAGES IN 2050 PKK15

ပုံ (၁၆) ၂၀၅၀ခုနှစ်တွင် ပခုက္ကမြိုနယ်၏ဒေသဆိုင်ရာ မြိုပြအခြေအနေ

Scenario B. Resilience is built to maintain current living standards

Pakokku in 2050 maintains current living standards by undertaking some adaptation measures, however, it broadly continues its present development trajectory

- To maintain present levels of development, increased water access for the dry areas
 would be essential. In the short term, measures could include better capture and
 storage of water at the household level. In the medium term, networks of reservoirs,
 with appropriate management structures in place, would help to ensure more
 consistent, year-round access to drinking water. In the longer term, some investment
 in, at the very least, maintaining the current infrastructure would be needed, and
 ideally extended and enhanced to ensure continuity of water supply for agriculture.
- These improvements in water access would reverse consistent declines in livelihoods and prevent further levels of indebtedness among livestock herders. However, to maintain present living standards, other adaptation measures are advisable: Improving soil fertility management; Veterinary services; Improving credit facilities through both revolving funds and micro-lending.
- Such measures would be necessary to curb rates of outward migration. Linked to this, improving the access to education beyond the grade 5 level, including technical and vocational training, will further enhance the skill levels of the township and make it easier to attract higher value-added industry.
- If present flooding trends continue, livelihoods and assets in the riverbank area will continue to be threatened. To prevent this, and to maintain current conditions, some flood prevention measures will be required.

Scenario C: Resilience is built that enables economic and social development, despite changes in climate by 2050, considering the different vulnerabilities of men and women

- Pakokku in 2050 sustains and continues people's socio-economic development through a diversified economy, improved access to water and healthy, functioning ecosystems.
- To continue and improve its development trajectory in a way that is resilient to changes in the climate, Pakokku will require improved access to better quality water, both for drinking and irrigation purposes.
- To ensure economic development that is resilient to climate change, Pakokku's
 economy will need to move towards a situation where there is greater valueaddition in township, with a greater share of industry and services, and more people
 employed in these sectors. This will be complex; more skilled people are required
 and infrastructure will need to at the very least maintain functionality year-round, and
 industry especially will need to be more labour intensive.
- Protecting flood prone areas, including parts of Pakokku town, from flooding is vitally important to resilient, sustainable development in Pakokku. This will require, as an initial step, a cost-benefit analysis type study of ecosystem and infrastructure options to protect the riverbank and defend people and assets from floods.

Conclusions and recommendations: Planning for Adaptation in Pakokku

- Building resilience to climate change in Pakokku township is a great and urgent challenge, on which life, welfare and prosperity of hundreds of thousands of people depends.
- The frequent floods and ongoing droughts in Pakokku provide a reminder of the sensitivity of Pakokku to severe hazards and slow-onset changes. However, this assessment calls the attention of authorities and development partners to the fact that the effects of changes in climate on productive, social, ecological, and infrastructural systems of the township will greatly affect liveability and viability of Pakokku over the next years, as well as increase the risk of further disasters. In these conditions, the vulnerability of people – particularly women, children, and disabled people – will greatly increase.

Key findings

- The study unveils three main broad findings:
- Decision makers will need to plan for both rapid on-set disasters, particularly floods, as well as slow-onset changes, especially in heat, droughts, and water availability.
- 2. Severe and wide-ranging vulnerabilities exacerbate these climate related threats, and are deeply interrelated with them.
- A fragile and fast degrading ecosystem: Despite its dry climate, and loose, sandy soil, the central dry zone had historically been a productive agricultural centre. The Ayeyarwady Dry Forests are critical to retaining this productivity, but current deforestation, agricultural practices and cutting for fuel and building materials represents a serious threat to their continued survival.
- An economic and productive structure largely based on climate-sensitive agriculture and fisheries with insufficient technical skills to diversify production and employment.
- High migration rates, with a high sex disparity; male migrants outnumber their female counterparts by three to one. This has resulted in 30 per cent of households in Pakokku being female headed. Agricultural value chains also largely take place outside the township, meaning that there is little capacity to create value chains in-township that will help to create wealth, raise incomes and reduce poverty, an issue that is caused and exacerbated by a lack of skills resulting from minimal vocational training.
- These vulnerabilities must be tackled holistically, to generate co-benefits and enable adaptation. However, this requires effective strategic planning, resources, coordination, and time
 - The response to this necessitates effective strategic planning, resources, coordination, and time. This assessment, the first of its kind in Pakokku, and the planning work that follows it, represents a step towards achieving resilience and sustainable development, but the efforts should be sustained over a long period of time, and by a number of actors, but particularly local and national government. If no actions are taken, we are likely to see Scenario A, business as usual unfold, which will make life and livelihoods very challenging in the township.

Based on these findings, the study concludes that urgent adaptation planning is required to avoid Scenario A, and strive to achieve at the very least Scenario B, while aspiring to create the conditions for Scenario C.

Policy Recommendations

Policy recommendations, derived from the findings of the assessment are as follows:

- It is crucial that healthy ecosystems are maintained and enhanced in Pakokku. Ecosystem services, as they represent a source of livelihood, cultural, spiritual, physical health and safety for a large number of people in Pakokku. Actions must focus, among others, on:
 - a. Preservation and expansion of forest cover. Without this protection, communities will lose the multiple benefits of forests, including soil fertility, flood and erosion protection and food and other non-timber forest products.
 - b. Protecting and improving sources of water for both human and agricultural use.
 - c. Improving land management by, for example, taking steps to improve soil management, reducing use of harmful chemicals, increasing the use of organic fertilizers and improving knowledge of farmers and communities more generally on land management.
 - d. Reducing natural resource exploitation through improved knowledge.
- 2. It is essential to protect the productive capacity of agriculture, on which so many livelihoods depend, from increasing heat and declining water availability, while generating more employment in less climate sensitive sectors
 - a. Enhance and diversify skills of people, both men and women, and especially younger people, to increase employability in different sectors in Pakokku and elsewhere, as some migration can't be avoided. Vocational training is also important as levels of technical qualifications are extremely low at present;
 - b. Strengthen the productive system, especially in agriculture, through improved techniques, seeds, and water-efficient irrigation techniques. Meanwhile, enhanced access to credit will enable farmers and livestock herders to make investments and diversify their incomes.
 - c. Increase opportunities for new industries or enterprises and promote investment, including through loans and other incentive schemes. This involves a large involvement of national, regional and district authorities, as well as development partners, and requires careful planning to be feasible.
 - d. Utilize the potential of women's contributions to household livelihoods. For more efficient and sustainable interventions, it is essential to enhance understanding of gender roles in relation to productive capacities.
- 3. Infrastructure must continue to function and protect people during extreme heat, droughts and floods
 - a. Spatial planning in any new infrastructure, settlement expansion or any other infrastructure and development is climate-sensitive. This means that planning should consider current and future risks related to floods, extreme heat, drought and water shortages.

- b. Housing and other public buildings should be designed, and, where possible, retrofitted to offer greater protection from extreme heat and floods.
- c. Housing safety also includes improved sanitation, and, crucially, the capacity to harvest water safely with improved techniques.
- d. Community capacities are improved to collect and manage water, in the context of increased water scarcity resulting from a shorter monsoon, variable and erratic rainfall, and increased evaporation.
- e. Transport and connectivity infrastructure should be planned and maintained in such a way that all people have access to markets, schools and hospitals during floods, droughts and heat.
- Planning for adaptation may benefit from improved local governance, meaning that priorities are captured and communicated at the township, district and regional levels.
- Awareness of climate change impacts and their implications is highly strategic, cost-effective and important, and it should therefore be a focus of any intervention in Pakokku.

Local Adaptation and Resilience Planning: A way forward

Between April and August 2016, the MCCA team extensively studied the vulnerabilities to climate change in Pakokku Township. Consultations were conducted in a participatory manner with all village administrators, and covered the entire township with meetings clustering different villages in focus groups. In addition, the team conducted specific consultations on gender issues, and with the Township Administration.

In the process, potential adaptive measures were identified to counter, prevent and mitigate the current and future impact of climate change. These were grouped under the eco-system, the infrastructure and connectivity and socio-economic actions. An exercise of prioritization was conducted. The activities prioritized were organized as follows:

- Outcomes to be achieved by 2050 or before, these outcomes are systemic and therefore interconnected, and recognize that ecological, socio-economic and infrastructure and connectivity systems must be addressed together, to be beneficial and ensure adaptation. This means that improving infrastructure, without protecting and enhancing the eco-system services deriving from mangroves, for instance, will not generate resilient communities.
- 2. Expected Results. Under each of the three outcomes, specific expected results are to be achieved that will contribute to achieve the overall three systemic outcomes
- Activities. Each of these outputs contains a set of activities. As they are prioritized, they
 are ranked for their adaptation capacity value, the difficulty and cost involved and time
 involved.

Strategic Outcome	Outcome		Category Training and capacity building	Cost	Feasibility	Acceptance	Adaptation effectiveness	Noregret	Speed	Score	St	Strategic Valu	
	Information, skills,			3	3	5	5	4	3	•	23		75
	knowledge and	Training on soil fertility management	Training and capacity building	4	3	3	5	4	3		22		75
	technolgy have been	Vocational training	Training and capacity building	2	3	4	3	4			20		100
	improved to combat		Management	5	4	4	4	5			25		50
		Permanent pastures	Investment	1	3	3	- 4	4			18		50 2
A diversified.		Mechanised farming	Investment	2	3	4	- 4	3	4		20		50 2
inclusive and resilient economy, to enhance the economic conditions of the township;	Increased investment and access to finance to maintain and imporve production in agriculture and Investock		Investment	4	4	5	4	4			24		100 2
		Irrigation for agriculture	Investment	1	3	2	- 4	5	1	•	16		25 2
		Seed production farm (includes livestock						3			16		50 3
		species) Agricultural inputs - drought resistant	Investment	2	3	4	3	4	4		23		
		species)	Investment		3 4 4	4 5 5		3 4 4	4				75 2
	Investment in new industries has	species) Agricultural inputs - drought resistant	Investment Investment Investment	2	4	4 5 5 4	4	4	4		23		75
		species) Agricultural inputs - drought resistant Loans for micro industry for landless people	Investment	2	4	4 5 4 4	4	4	3		23		75

Strategic Outcome	Result		Action	Category	Cost	Fe ad Miley	Community a cceptance	Ad apt asion o fflectiven ess	Benefit an ywy (no regret)	Speed	Score	Strategic mea	aures	
		1.1	Studies on spatial location risk areas		5	5	5	5	5	5	9 30		100	
		1.4	Improve design of housing to protect from floods and heat weaves		4	5	5	4	5	4	27		100	
		1.6	Improve storage to protect food , crops and animals from floods		3	4	5	5	5	4	25		100	
		1.9	Willingness to pay for retoffiting study		5	4	4	5	5	3	25		100	
		1.10	Participatory planning		5	4	4	4	5	4	25		100	
	E1. All people Public and private facilities and services are	1.3	Improve management of infrastruture		2	4	5	5	5	3	24		100	
	protected in Pakkoku agains A2 natural hazards	15	Improve radio access and broadcast		3	4	5	4	5	2	24		100	
		1.11	Improve design of stables to protect animals from beat waves		3	4	4	4	5	4	24		100	
		1.2	Building shelters than can also be used as schools/community centres		2	4	5	4	5	3	23		100	
		1.7	Roads and bridges to improve access		2	3	5	4	5	3	22		100	
		1.8	Improve construction techniques		3	5	5	5	5	4	27		100 if or	n the job
		1.12	Improve shelters to protect elder people from heat waves		2	4	4	4	5	2	22		100	
Resilient Infrastructure and	E2. Access to water in Pakokku is	2.3	Improve water management at community level		4	5	5	5	5	4	23		100	
connectivity, that protects and		2.5	Strategic water networking between village tracts lemeneency reservoir)		4	4	5	5	5	4	27		100	
enables people		2.6	Improve Network of water harvesting at household level		4	4	4	4	5	4	25		100	
		2.1	Participatory planning		5	4	4	4	4	3	24		100	
		2.2	Improve water capture and storage at community level		3	4	4	4	4	4	23		100	
	ensured	2.3	Improve HHs level water management		5	5	5	5	5	5			100 incr	reased - t
		2.7	Drip irrigation schemes		3	4	4	4	5	2	23		100	
		2.9	Improve stream and river catchment areas		3	4	4	4	5	3	23		100	
		2.10	River basin management		1	2	5	5	5	2	20		100	
		2.8	Build irrigation channels		1	2	3	3	5	2	0 16		100	
		3.1	Flood and erosion control plans		4	4	4	4	5	3	24		100 Ok s	with all a
	E3. Land is protected of erosion	1.4	Studies on river floods (hydrodynamics)		3	4	4	4	5	4	24	0	100	
	and floods	3.2	Embankments		1	2	4	4	5	2			100	
		3.3	Green infrastructure to protect from river/stream erosion (bamboo embankment)		3	4	4	4	5	3	23		100	

FOR MORE INFORMATION, VISIT: facebook.com/myanmarccalliance myanmarccalliance.org

PRINTED IN 2018